位置服务已成为除通信服务之外的第二大基础服务,地图和定位相关技术和产业已经从室外向室内发展,以提供无所不在的基于位置的服务,其主要推动力是室内位置服务所能带来的巨大的应用和商业潜能。
随着社会的进步和科技的发展,定位技术在技术手段、定位精度、可用性等方面均取得质的飞越,并且逐步从航海、航天、航空、测绘、军事、自然灾害预防等“高大上”的领域逐步渗透到社会生活的方方面面,成为人们日常中不可或缺的重要应用——比如人员搜寻、位置查找、交通管理、车辆导航与路线规划等。
总体来说,定位技术可以按照使用场景的不同划分为室内定位和室外定位两大类,因为场景不同,需求也就不同,所以分别采用的定位技术也不尽相同。
目前应用于室外定位的主流技术主要有卫星定位和基站定位两种。
卫星定位即是通过接收卫星提供的经纬度坐标信号来进行定位,卫星定位系统主要有:美国全球定位系(GPS)、俄罗斯格洛纳斯(GLONASS)、欧洲伽利略(GALILEO)系统、中国北斗卫星导航系统,其中GPS系统是现阶段应用最为广泛、技术最为成熟的卫星定位技术。
GPS全球卫星定位系统由三部分组成:空间部分、地面控制部分、用户设备部分。
- 空间部分是由24 颗工作卫星组成,它们均匀分布在6 个轨道面上(每个轨道面4 颗),卫星的分布使得在全球任何地方、任何时间都可观测到4 颗以上的卫星,并能保持良好定位解算精度的几何图像;
- 控制部分主要由监测站、主控站、备用主控站、信息注入站构成,主要负责GPS卫星阵的管理控制;
- 用户设备部分主要是GPS接收机,主要功能是接收GPS卫星发射的信号,获得定位信息和观测量,经数据处理实现定位。
-
大型商场中的商户能够通过室内定位技术获知哪些地方人流量最大,顾客通常会选择哪些行动路线等,从而更科学地布置柜台或者选择举办促销活动的地点。 -
顾客也可以利用室内定位技术更方便地找到所需购买物品的摆放区域,并获得前往该处的最佳路线。 -
家长不用再担心孩子在商场中走失,通过室内定位技术可以实时定位孩子的位置。 -
公司的管理者则可以运用室内定位技术实时获知室内的人员状况,从而更好地优化空调的使用等,达到节能减排的目的,还能够有效提高安全保卫的水平。 -
通过部署室内定位技术,电信运营商能够更好地找到室内覆盖的“盲点”和“热点”区域,更好地在室内为用户提供通信服务。
定位原理 | 描述 | 特点 |
临近探测法 | 通过一些有范围限制的物理信号的接收,从而判断移动设备是否出现在某一个发射点附近。 | 该方法虽然只能提供大概的定位信息,但其布设成本低、易于搭建,适合于一些对定位精度要求不高的应用,例如自动识别系统用于公司的员工签到。 |
质心定位法 | 根据移动设备可接收信号范围内所有已知的信标(beacon)位置,计算其质心坐标作为移动设备的坐标。 | 该方法易于理解,计算量小,定位精度取决于信标的布设密度。 |
多边定位法 | 通过测量待测目标到已知参考点之间的距离,从而确定待测目标的位置。 | 精度高、应用广。 |
三角定位法 | 该方法是在获取待测目标相对3个已知参考点的距离信息,可以确定唯一的三角形,即可确定待测目标的位置。 | 精度高、应用广。 |
极点法 | 通过测量相对某一已知参考点的距离和角度从而确定待测点的位置。 | 该方法仅需已知一个参考点的位置坐标,因此使用非常方便,已经在大地测量中得到广泛应用。 |
指纹定位法 | 在定位空间中建立指纹数据库,通过将实际信息与数据库中的参数进行对比来实现定位。 | 指纹定位的优势是几乎不需要参考测量点,定位精度相对较高;但缺点是前期离线建立指纹库的工作量巨大,同时很难自适应于环境变化较大的场景。 |
航位推算法 | 是在已知上一位置的基础上,通过计算或已知的运动速度和时间计算得到当前的位置。 | 数据稳定,无依赖,但该方法存在累积误差,定位精度随着时间和距离增加而恶化。 |
目前,比较流行的基于超声波室内定位的技术还有两种:一种为将超声波与射频技术结合进行定位。由于射频信号传输速率接近光速,远高于射频速率,那么可以利用射频信号先激活电子标签而后使其接收超声波信号,利用时间差的方法测距。这种技术成本低,功耗小,精度高。另一种为多超声波定位技术。该技术采用全局定位,可在移动机器人身上4个朝向安装4个超声波传感器,将待定位空间分区,由超声波传感器测距形成坐标,总体把握数据,抗干扰性强,精度高,而且可以解决机器人迷路问题。
超声波定位精度可达厘米级,精度比较高。缺陷是超声波在传输过程中衰减明显从而影响其定位有效范围。
5、蓝牙技术
蓝牙定位基于RSSI(Received Signal Strength Indication,信号场强指示)定位原理。根据定位端的不同,蓝牙定位方式分为网络侧定位和终端侧定位。
网络侧定位系统由终端(手机等带低功耗蓝牙的终端)、蓝牙beacon节点,蓝牙网关,无线局域网及后端数据服务器构成。其具体定位过程是:
1)首先在区域内铺设beacon或蓝牙网关。
2)当终端进入beacon信号覆盖范围,终端就能感应到beacon的广播信号或广播蓝牙信号被网关接收,然后测算出在某beacon下的RSSI值通过蓝牙网关经过wifi网络传送到后端数据服务器,通过服务器内置的定位算法测算出终端的具体位置。
终端侧定位系统由终端设备(如嵌入SDK软件包的手机)和beacon组成。其具体定位原理是:
1)首先在区域内铺设蓝牙信标
2)beacon不断的向周围广播信号和数据包或终端向蓝牙网关广播数据包
3)当终端设备进入beacon或蓝牙网关的信号覆盖的范围,测出其在不同基站下的RSSI值或方向角,然后再通过手机内置的定位算法测算出具体位置。
终端侧定位一般用于室内定位导航,精准位置营销等用户终端;而网络侧定位主要用于人员跟踪定位,资产定位及客流分析等情境之中。蓝牙定位的优势在于实现简单,定位精度和蓝牙信标的铺设密度及发射功率,以及蓝牙网关的类型和密度有密切关系。并且非常省电,可通过深度睡眠、免连接、协议简单等方式达到省电目的。
6、惯性导航技术
这是一种纯客户端的技术,主要利用终端惯性传感器采集的运动数据,如加速度传感器、陀螺仪等测量物体的速度、方向、加速度等信息,基于航位推测法,经过各种运算得到物体的位置信息。
随着行走时间增加,惯性导航定位的误差也在不断累积。需要外界更高精度的数据源对其进行校准。所以现在惯性导航一般和WiFi指纹或其他定位结合在一起,每过一段时间通过WiFi或其他定位请求室内位置,以此来对MEMS产生的误差进行修正。该技术目前的商用也比较成熟,在扫地机器人中得到广泛应用。
7、超宽带(UWB)定位技术
超宽带技术是近年来新兴一项全新的、与传统通信技术有极大差异的通信无线新技术。它不需要使用传统通信体制中的载波,而是通过发送和接收具有纳秒或微秒级以下的极窄脉冲来传输数据,从而具有3.1~10.6GHz量级的带宽。目前,包括美国,日本,加拿大等在内的国家都在研究这项技术,在无线室内定位领域具有良好的前景。
UWB技术是一种传输速率高,发射功率较低,穿透能力较强并且是基于极窄脉冲的无线技术,无载波。正是这些优点,使它在室内定位领域得到了较为精确的结果。
超宽带(UWB)定位技术利用事先布置好的已知位置的锚节点和桥节点,与新加入的盲节点进行通讯,并利用三角定位或者测向测角或者“指纹”定位方式来确定位置。
超宽带可用于室内精确定位,例如战场士兵的位置发现、机器人运动跟踪等。超宽带系统与传统的窄带系统相比,具有穿透力强、功耗低、抗干扰效果好、安全性高、系统复杂度低、能提供精确定位精度等优点。因此,超宽带技术可以应用于室内静止或者移动物体以及人的定位跟踪与导航,且能提供十分精确的定位精度。根据不同公司使用的技术手段或算法不同,精度可保持在0.1 m~0.5 m。
8、LED可见光技术
可见光是一个新兴领域,通过对每个LED灯进行编码,将ID调制在灯光上,灯会不断发射自己的ID,通过利用手机的前置摄像头来识别这些编码。利用所获取的识别信息在地图数据库中确定对应的位置信息,完成定位。
根据灯光到达的角度进一步细化定位的结果,北京广义恒鑫科技有限公司与清华大学合作,做到了厘米级定位精度。由于不需要额外部署基础设施,终端数量的扩大对性能没有任何的影响,并且可以达到一个非常高的精度,该技术被如潜艇或工厂等客户所看好。
目前,可见光技术在北美有很多商场已经在部署。用户下载应用后,到达商场里的某一个货架,通过检测货架周围的灯光即可知晓具体位置,商家在通过这样的方法向消费者推动商品的折扣等信息。
9、地磁定位技术
地球可视为一个磁偶极,其中一极位于地理北极附近,另一极位于地理南极附近。地磁场包括基本磁场和变化磁场两个部分。基本磁场是地磁场的主要部分,起源于地球内部,比较稳定,属于静磁场部分。变化磁场包括地磁场的各种短期变化,主要起源于地球内部,相对比较微弱。
现代建筑的钢筋混凝土结构会在局部范围内对地磁产生扰乱,指南针可能也会因此受到影响。原则上来说,非均匀的磁场环境会因其路径不同产生不同的磁场观测结果。而这种被称为 地磁指纹的定位技术,正是利用地磁在室内的这种变化进行室内导航,并且在理想情况下,导航精度已经可以达到 0.1 米到 2 米。
不过使用这种技术进行导航的过程还是稍显麻烦。你需要先将室内楼层平面图上传到地图云中,然后你需要使用其移动客户端实地记录目标地点不同方位的地磁场。记录的地磁数据都会被客户端上传至云端,这样其它人才能利用已记录过的地磁进行精确室内导航。
将该技术与Wi-Fi热点地图、惯性导航技术联合使用,精度高, 商业应用中,可以达到米级定位标准,但磁信号容易受到环境中不断变化的电、磁信号源干扰,定位结果不稳定,精度会受影响。
10、视觉定位
视觉定位系统可以分为两类,一类是通过移动的传感器(如摄像头)采集图像确定该传感器的位置,另一类是固定位置的传感器确定图像中待测目标的位置。根据参考点选择不同又可以分为参考三维建筑模型、图像、预部署目标、投影目标、参考其他传感器和无参考。
参考3D建筑模型和图像分别是以已有建筑结构数据库和预先标定图像进行比对。而为了提高鲁棒性,参考预部署目标使用布置好的特定图像标志(如二维码)作为参考点;投影目标则是在参考预部署目标的基础上在室内环境投影参考点。参考其他传感器则可以融合其他传感器数据以提高精度、覆盖范围或鲁棒性。
除了以上提及的,目前来看定位技术的种类有几十甚至上百种,而每种定位技术都有自己的优缺点和适合的应用场景,没有绝对的胜负之分。根据不用的需求因地制宜的部署解决方案,正所谓,“合适的,才是最好的”!
原创文章,作者:hengxin,如若转载,请注明出处:https://www.guangyihengxin.com/news/458.html